alicat質(zhì)量流量計(jì)采用一個(gè)恒流源(恒壓源)對(duì)熱源加熱,流體流動(dòng)使兩個(gè)鉑電阻的溫度不同。鉑電阻連接在惠斯通電橋中,鉑電阻的溫度不同使鉑電阻的電阻呈現(xiàn)不同阻值,從而使電橋不平衡,通過(guò)檢測(cè)電橋的電壓來(lái)反應(yīng)流體流量。
現(xiàn)從傳熱學(xué)角度對(duì)該傳感器原理作進(jìn)一步的分析。假定流體為均勻分布的牛頓型流體,以一維測(cè)量為例:
熱源R置于傳感器基片的中心,在其兩邊對(duì)稱地放置兩個(gè)*相同的溫度檢測(cè)芯片(薄膜式鉑電阻)S1和S2傳感器與流體之間的熱交換主要通過(guò)對(duì)流進(jìn)行,熱源與溫度檢測(cè)芯片之間的熱交換可通過(guò)傳導(dǎo)和對(duì)流進(jìn)行。
當(dāng)流體流速為零,即當(dāng)流體處于靜止?fàn)顟B(tài)時(shí),表面附近的流線場(chǎng)及主要由此產(chǎn)生的溫度場(chǎng)相對(duì)于熱源呈對(duì)稱分布。
由于結(jié)構(gòu)上的對(duì)稱性,通過(guò)基片熱傳導(dǎo)進(jìn)行的熱交換相對(duì)于熱源始終是對(duì)稱的。
此時(shí)感溫芯片的鉑電阻溫度滿足TS1=TS2,即溫差:ΔT21=TS2-TS1=0。
當(dāng)流體流動(dòng)時(shí),流體和鉑電阻之間主要為對(duì)流換熱,由于局部對(duì)流換熱系數(shù)的不同,基片表面附近的流線場(chǎng)及相應(yīng)的溫度場(chǎng)相對(duì)于中心熱源的分布發(fā)生變化,導(dǎo)致傾向性的不對(duì)稱分布。
根據(jù)alicat質(zhì)量流量計(jì)熱邊界層理論,可知,此時(shí)上游溫度檢測(cè)芯片表面冷卻速率高于下游芯片表面;
即鉑電阻S1的換熱系數(shù)大于S2是換熱系數(shù),所以TS2>TS1,溫差溫度差:ΔT21=TS2-TS1>0。
且ΔT21的值隨流體流速的增大而增大。如果改變流體流向,ΔT21亦相應(yīng)改變符號(hào)。
利用熱平衡方程可以計(jì)算出因?qū)α饕鸬男酒砻娴臏囟仍俜植迹@得溫度差與流速的關(guān)系式。